
Chapter 38
Second-Order Inference for Functional Data
with Application to DNA Minicircles

Victor M. Panaretos, David Kraus, John H. Maddocks

Abstract The problem of comparison of second-order (covariance) properties of
two samples of random curves is considered. The work is motivated by the study of
the mechanical properties of short strands of DNA. Our test is based on the common
empirical Karhunen–Loève expansion and truncated approximation of the Hilbert–
Schmidt distance of the empirical covariance operators.

38.1 Introduction

The development of the statistical methods described here was motivated by a dataset
consisting of reconstructed three-dimensional electron microscope images of loops
(called minicircles) obtained from short strands of DNA (Amzallag, Vaillant, Jacob,
Unser, Bednar, Kahn, Dubochet, Stasiak and Maddocks, 2006). There are two types
(called TATA and CAP) of DNA minicircles with identical base-pair sequences, ex-
cept for short susubsequence where they differ. The main question is whether this
difference affects the geometry of the minicircle.

Mathematically, DNA minicircles are closed curves in R
3. Figure 38.1 shows

projections of these curves on the planes given by the axes of the coordinate sys-
tem. In Figure 38.2 coordinates on the axes are plotted against the arc length of the
curve. This plot suggests that the data could be analysed by means of functional data
analysis.
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Fig. 38.1: Projections of DNA minicircles on the planes given by the principal
axes of inertia (three panels on the left side: TATA curves, right: CAP curves).
Mean curves are plotted in white.

Fig. 38.2: Coordinates of DNA minicircles on the principal axes of inertia. Mean
curves are plotted in white.
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Plots of estimated mean functions do not suggest any difference between the two
types of curves. We tested the hypothesis of equal mean functions and the results
were insignificant. Therefore we focused on second-order properties and developed
methods for comparing covariance operators.

In this extended abstract we sketch the main idea of the testing procedure (Sec-
tion 2) and summarise results of the analysis of DNA minicircles (Section 3). De-
tails of the statistical methods and data application mentioned here can be found in
Panaretos, Kraus and Maddocks (2010).

38.2 Test

Let X1, . . . ,Xn1 and Y1, . . . ,Yn2 be two independent samples of stochastic processes
with paths in L2[0,1] with mean functions μX ,μY and covariance operators RX ,RY .
The aim is to test the null hypothesis RX = RY against the general alternative RX =
RY .

The problem of comparing covariance operators of functional data has received
relatively little attention in the literature. Related but different second-order prob-
lems were studied by Benko, Härdle and Kneip (2009) and Horváth, Hušková and
Kokoszka (2010).

Our test is based on the comparison of the empirical covariance operators

R̂X =
n1

n1 + n2

n1

∑
i=1

(Xi− X̄)⊗ (Xi− X̄), R̂Y =
n1

n1 + n2

n2

∑
i=1

(Yi− Ȳ )⊗ (Yi− Ȳ).

The test will reject the null hypothesis when the operator D = R̂X − R̂Y is signifi-
cantly far from the zero operator.

The distance of D from zero can be measured by the squared Hilbert–Schmidt
norm

‖D‖2 =
∞

∑
j=1

∞

∑
k=1

〈ϕ j,Dϕk〉2

where {ϕ j, j = 1,2, . . .} is any orthonormal basis of the sample Hilbert space
L2[0,1]. This random variable does not have a tractable asymptotic distribution.
Therefore we perform dimension reduction and study the infinite-dimensional ob-
ject D on a finite-dimensional subspace. Let Φ be the K-dimensional linear sub-
space generated by an orthonormal basis {ϕ1, . . . ,ϕK} (where K is a finite number
small than or equal to the rank of the covariance operator). Instead of measuring
the difference of D from zero on the whole Hilbert space L2[0,1], we restrict our
attention to Φ . More precisely, instead of D we use the operator πΦDπΦ where
πΦ = ∑K

k=1ϕk ⊗ ϕk is the projection operator on Φ . The square of its Hilbert–
Schmidt norm equals
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‖πΦDπΦ‖2 =
K

∑
j=1

K

∑
k=1

〈ϕ j,Dϕk〉2.

In light of the Karhunen–Loève expansion and Mercer’s theorem, it is natural to
choose the functions ϕk as the first K eigenfunctions ϕ̂k of the pooled sample co-
variance estimator R̂ = n1

n1+n2
R̂X + n2

n1+n2
R̂Y . (Note that one cannot perform eigen-

decomposition of each covariance operator separately because a common basis is
needed.)

The terms S jk = 〈ϕ j,Dϕk〉 can be seen as differences of the empirical covariances
of the Fourier coefficients of the observations with respect to ϕ1, . . . ,ϕK . That is, for
βX

ik = 〈Xi,ϕk〉, βY
ik = 〈Yi,ϕk〉 one can see that S jk = λ̂X

jk− λ̂Y
jk where

λ̂X
jk =

1
n1

n1

∑
i=1

(βX
i j − β̄X

j )(βX
ik − β̄X

k ), λ̂Y
jk =

1
n2

n2

∑
i=1

(βY
i j − β̄Y

j )(βY
ik − β̄Y

k ).

The variable ‖πΦDπΦ‖2 thus equals the squared Frobenius norm of the difference
of the empirical covariance matrices of the Fourier scores.

Instead of simply summing the squares of S jk, one combines the K(K + 1)/2
different terms S jk, 1 ≤ j ≤ k ≤ K in a quadratic form reflecting their covariance
structure as follows. Under certain assumptions it can be shown using the Hilbert
space Central Limit Theorem that under the null hypothesis the test operator

n1/2
1 n1/2

2

(n1 + n2)1/2
D

is asymptotically distributed as a zero-mean Gaussian random linear operator on
L2[0,1]. Consequently, in view of the consistency of empirical eigenfunctions the
vector with components S jk, 1 ≤ j ≤ k ≤ K converges to a mean zero Gaussian
vector whose covariance matrix can be consistently estimated by the empirical co-
variance matrix, say W , of the summands in S jk. Then the quadratic test statistic
follows the form n1n2

n1 + n2
STWS.

Its asymptotic distribution under the null is chi-square with K(K + 1)/2 degrees of
freedom. The test rejects H0 when the value of the statistic is significantly large.

In the case of Gaussian data the limiting covariance structure of S simplifies. It
turns out that the components S jk are asymptotically independent and their limiting
variances can be expressed in terms of the eigenvalues of R1 = R2. This leads to
the statistic

T =
n1n2

n1 + n2

K

∑
j=1

K

∑
k=1

(λ̂X
jk− λ̂Y

jk)
2

2( n1
n λ̂

X
j j +

n2
n λ̂

Y
j j)(

n1
n λ̂

X
kk + n2

n λ̂
Y
kk)

with asymptotic χ2 distribution with K(K + 1)/2 degrees of freedom. When one a
priori expects the eigenfunctions in the two samples to be equal, the test can be based
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only on the diagonal ( j = k) terms in the sum above (comparing only variances, not
covariances of the scores). Such a statistic is asymptotically χ2

K-distributed. Modifi-
cations of the test statistics can be obtained by variance stabilising transformations
of the summands.

The truncation level K can be selected with the help of scree plots and cumulative
variance plots. We have also proposed an automatic procedure based on a penalised
fit criterion.

38.3 Application to DNA minicircles

The original original (x,y,z)-coordinates of the curves were obtained from electron
microscope images of a frozen liquid containing the minicircles. Therefore the orig-
inal curves are randomly rotated and shifted, thus not directly comparable. So it
is necessary to align them. We cannot apply landmark alignment methods because
there are no landmarks (the sequence of DNA base-pairs is not observed). Warping
methods are not appropriate as they could modify the second-order properties. In-
stead, after centering (setting the center of mass to 0) and scaling to unit length, we
align each curve separately by rotating it in a way given by the moment of inertia
tensor.

The moment of inertia tensor is defined as

J(u) =
∫

R3
‖(I−uuT)x‖2μ(dx)

where u is a unit vector in R
3 and μ is the uniform distribution of mass on the

curve. By integrating the squared distance of the points on the curve from the axis,
the tensor measures how difficult it is to rotate the curve around the axis given by u.
The first eigenvector (corresponding to the largest eigenvalue) determines the first
principal axis of inertia (PAI1) around which the curve is most difficult to rotate.
The projection on the plane orthogonal to PAI1 is most spread. Then PAI2 given by
the second eigenvector is the axis orthogonal to PAI1 around which the projection
of the curve on the first principal plane is most difficult to rotate. Within this plane,
the projection on the axis PAI3 orthogonal to PAI2 is most spread.

For each curve we computed the principal axes of inertia and rotated the curve
so that its principal axes agree with the (x,y,z)-axes. This procedure is similar to
the balancing of a tyre. Figure 38.1 shows the rotated minicircles. These closed
curves have no starting point and no orientation. As the starting point of each curve
we chose the point where the projection of the curve on the first principal plane
intersects the positive horizontal semi-axis; we chose the counter-clockwise orien-
tation. As the ‘time’ argument of each functional observation we use the arc length
of the curve from the starting point. The resulting functional data set is plotted in
Figure 38.2.

The test comparing the covariance operators suggests significant differences be-
tween the samples. For example, when applied to the projections on the first princi-
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pal plane (PAI2,3) with K = 7 (selected by the automatic procedure), the p-value is
0.023.
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